Micromechanical properties of silicon-carbide thin films deposited using single-source chemical-vapor deposition

نویسندگان

  • C. R. Stoldt
  • M. C. Fritz
  • C. Carraro
  • R. Maboudian
چکیده

1,3-Disilabutane is used as a single-source precursor to deposit conformal silicon-carbide films on silicon atomic-force-microscopy cantilevers. By measuring the resonance frequency of the cantilever as a function of silicon-carbide film thickness and developing an appropriate model, the value of the film’s elastic modulus is determined. This value is in good agreement with those reported for silicon-carbide films deposited using conventional dual-source chemical-vapor deposition. Additionally, we comment on the feasibility of integrating this process into the fabrication technology for microelectromechanical systems. © 2001 American Institute of Physics. @DOI: 10.1063/1.1383277#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review on Titanium Nitride and Titanium Carbide Single and Multilayer Coatings Deposited by Plasma Assisted Chemical Vapor Deposition

In this paper, we reviewed researches about the titanium nitride (TiN) and titanium carbide (TiC) single and multilayer coatings. These coatings were deposited by the plasma assisted chemical vapor deposition (PACVD) technique. Plasma-based technologies are used for the processing of thin films and coatings for different applications such as automobile and aerospace parts, computer disc drives,...

متن کامل

Low temperature deposition of nanocrystalline silicon carbide films by plasma enhanced chemical vapor deposition and their structural and optical characterization

Nanocrystalline silicon carbide ~SiC! thin films were deposited by plasma enhanced chemical vapor deposition technique at different deposition temperatures (Td) ranging from 80 to 575 °C and different gas flow ratios ~GFRs!. While diethylsilane was used as the source for the preparation of SiC films, hydrogen, argon and helium were used as dilution gases in different concentrations. The effects...

متن کامل

Amorphous silicon carbide thin films deposited by plasma enhanced chemical vapor deposition at different temperature for hard environment applications

PECVD technology was used for deposition of a-SiC:H films at different temperature from SiH4 and CH4 gas mixture. A P-type silicon wafer with resistivity 2-7 cm and (100) orientation was used as the substrate for the growth of SiC films. Irradiation of samples by fast neutrons with fluence 1.4x10 14 cm -2 was used. Raman band feature intensity decreasing after neutron irradiation. The measured ...

متن کامل

Synthesis of Boron-Aluminum Nitride Thin Film by Chemical Vapour Deposition Using Gas Bubbler

Boron included aluminium nitride (B-AlN) thin films were synthesized on silicon (Si) substrates through chemical vapour deposition ( CVD ) at 773 K (500 °C). tert-buthylamine (tBuNH2) solution was used as nitrogen source and delivered through gas bubbler. B-AlN thin films were prepared on Si-100 substrates by varying gas mixture ratio of three precursors. The structural properties of the films ...

متن کامل

The effect of substrate temperature on the properties of nanostructured silicon carbide films deposited by hypersonic plasma particle deposition

Nanostructured silicon carbide films have been deposited on molybdenum substrates by hypersonic plasma particle deposition. In this process a thermal plasma with injected reactants (SiCl4 and CH4) is expanded through a nozzle leading to the nucleation of ultrafine particles. Particles entrained in the supersonic flow are then inertially deposited in vacuum onto a temperature-controlled substrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001